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1  ABSTRACT 
With the industry-wide shift to multi-core processors and the rise of large-scale clusters as the 
engines for web services, it is clear that the future is all about exploiting parallelism. 
Unfortunately, writing parallel or concurrent software has long been a notoriously difficult 
task for programmers. In particular, the goals of maintaining correctness while also achieving 
high performance are far more challenging in a parallel or concurrent environment compared 
with a single-threaded system. 

Meld is a logic-based programming language that has proven effective for programming 
massively distributed systems. In this report we describe Meld and how it can also be 
used to program more traditional parallel machines. We evaluate Meld on a small set of 
benchmarks and describe some of the methods we use to make it an effectiv tool for parallel 
programming. While more work needs to be done it is clear that the use of a single language 
for describing both computation and coordination can lead to clear, concise, and efficient 
implementations. 

 

2  INTRODUCTION 
With the industry-wide shift to multi-core processors and the rise of large-scale clusters as 
the engines for web services, it is clear that the future is all about exploiting parallelism. 
Unfortunately, writing parallel or concurrent software has long been a notoriously difficult 
task for programmers. In particular, the goals of maintaining correctness while also 
achieving high performance are far more challenging in a parallel or concurrent 
environment compared with a single-threaded system. Maintaining the correct functionality 
of the software is complicated in part because a key to avoiding performance bottlenecks is 
to distribute (and often replicate) program state across the machine, and managing the 
concurrent accesses to this distributed state (while avoiding undesirable forms of race 
conditions or inconsistency) can greatly increase programming complexity. Compared with 
sequential systems, parallel and concurrent systems are susceptible to additional performance 
pitfalls including load imbalance, synchronization stalls, communication overhead, network 
bottlenecks, and, in cases with a shared address space (e.g., multi-core), more complex 
interactions with the memory hierarchy (e.g., false sharing). Assuming that the programmer has 
identified a sufficient source of fundamental parallelism, the key to achieving good 
performance typically boils down to data partitioning and scheduling: i.e., distributing the 
tasks (and their associated data) across the machine and prioritizing them in the right order 
such that the amount of work is evenly balanced while exploiting locality to minimize 
communication, minimize synchronization, and take full advantage of the memory hierarchy. 
This project investigated a new, general approach to let programmers solve both the data 
partitioning and the scheduling problem succinctly, provably, and all within a single language, 
Meld. 

In the context of the Claytronics project [1], a massive distributed system with millions 
of modular robots [2], a new language called Meld has emerged. Developed by Ashley-
Rollman et. al [3], Meld makes programming such types of systems possible, since it allows 
the ensemble to be seen as a unified whole. The language handles issues such as 
communication and synchronization automatically by compiling programs into fully 
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distributed code. 
Meld is a bottom-up logic programming language based on Datalog [4]. In Meld, each fact 

must refer to a node in the ensemble where the fact will be stored and the communication 
between nodes is made implicit through the use of structural facts. This declarative 
approach removes the need to understand how the system manages state and how 
communication is implemented underneath, making programs far easier to write and read. 
Moreover, the use of logic programming makes programs particularly suited for correctness 
proofs. 

This report describes our experiments in extending Meld to multicore and traditional 
distributed systems. While in ensembles the system is viewed as a graph of processing units, 
in traditional architectures we view it as a data structure that is manipulated by several 
threads or processes. For instance, in neural networks we have a graph of nodes, where 
nodes naturally correspond to neurons and each node contains several facts such as its layer 
type and the weight of its connections. 

Previous results for ensembles showed that it is possible to write efficient and scalable 
programs on systems with over one million nodes [3]. For parallel and distributed 
architectures, we have applied Meld in machine learning algorithms such as loopy belief 
propagation, graph algorithms and sparse matrix problems. We developed a new compiler and 
runtime system that runs on multicore processors using Pthreads and also on distributed 
systems, using OpenMPI [5]. The compiler leverages information about the network topology 
to speed up programs, and the runtime system uses several strategies for manipulating the 
graph of nodes. Preliminary results indicate that Meld is able to scale programs in these 
architectures with minimal effort from the programmer. 

2.1  Approaches to Parallel Programming 
Over the years, researchers have explored a rich set of parallel programming models with 
varying degrees of  success. At  one  end  of  the  spectrum are  lower-level programming 
abstractions such  as  message passing (e.g., MPI) and shared memory (e.g., OpenMP). An 
advantage of these lower-level models is expressiveness: with sufficient effort, one can 
control nearly every aspect of how the parallel program behaves (including data partitioning 
and scheduling), and one can apply these models to almost any appli- cation domain. The key 
disadvantage, however, is programming complexity: because programmers must explicitly 
manage asynchronous threads and worry about all of the possible ways in which their 
arbitrary interleavings could accidentally corrupt program state, most mortal programmers 
struggle mightily with correctness issues. In theory, an MPI (or OpenMP) wizard can 
squeeze every last drop of performance out of a machine because they can control 
everything, but in reality even programming wizards struggle with correctness and 
performance issues in these models once the applications become sufficiently large and 
sophisticated. The result tends to be a tight intertwining of the algorithm and the 
instructions for coordinating the parallel execution, making the program even harder to 
understand and maintain. In addition to these scalability challenges, fault tolerance is also left 
as an “exercise for the reader” in these lower-level programming abstractions. 

To help address these correctness challenges, a number of researchers have explored 
functional (e.g., Id90 [6], [7], Haskell [8], and NESL [9]) languages as a  way to  create 
parallelism while reducing the amount of state that the programmer must explicitly reason 
about. These declarative and functional approaches help to simplify the programming task and 
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eliminate race conditions on data, but unfortunately they do not allow the programmer to 
control scheduling (hence performance can often be disappointing), and proof capabilities 
have not been demonstrated. 

We observe that some of the most successful parallel programming models have been 
tailored to application domains where the models can provide a reasonably high level of 
abstraction (e.g., without diving into the gory details of how to manage asynchronous 
threads) while still providing a clear and sufficiently expressive model for data partitioning 
and scheduling. For example, synchronous dataflow (e.g., SISAL [10]) and stream-based 
languages (e.g., StreamIt [11]) have also been quite successful for streaming-type applications 
due to their simple producer/consumer data sharing model and their simple pipelined 
scheduling model. In the scientific computing domain, HPF’s data parallel model [12] has 
been quite successful for dense matrix computations: rather than explicitly creating threads, 
the programmer simply specifies how the data is to be distributed across the machine, and the 
computation is scheduled accordingly using an owner computes model. In the arena of 
databases, SQL [13] is an example of a declarative language which works in a very limited 
domain, but is extremely successful. 

A recent success story is the MapReduce programming model, which can be viewed as a 
somewhat more generalized version of the data parallel model that is optimized for large 
scale clusters. In MapReduce, the data sharing and scheduling model is very simple: the 
computation for the map phase is executed on the nodes that contain that data, the 
communication occurs only during the subsequent global reduce phase. The DryadLINQ 
[14], [15], Pregel [16], and Pig Latin [17] are programming models which are also designed 
for clusters and offer somewhat more general programming models than MapReduce, but they 
do not allow the programmer to specify scheduling strategies or support formal proof 
techniques. 

Hellerstein’s group has been working on a family of Datalog [18] descendants—P2 [19], 
Overlog [20], and SNLog [21]—that provided the initial inspiration for our own work and 
were designed for program- ming overlay networks and sensor networks. In contrast, Meld 
has added—among other things—support for robot actuation and sensing, Meld is based upon 
a well-defined formal semantics, and Meld has been shown to be amenable to formal proof. 
In principle, even very large ensembles can be reasoned about formally with Meld. 

One clear theme that comes from looking a t  this impressive body of work is that 
there lacks a clear and concise method for coordinating the data partitioning and scheduling 
of threads separately from the main algorithm. The idea of a coordination specification, 
however, is not new. Early work in the context of Fortran showed that separating out 
coordination provided significant leverage for dense matrix codes with potentially unbalanced 
work [22]. Other work from this period includes Linda [23], CLP [24], and Schedule [25] 
which are all examples of languages which directly supported coordination. Our approach 
borrows ideas from this early work, applying them to Meld in the context of modern 
architectures. 

In short, no other approach has been shown to create expressive, concise parallel programs 
which are scalable, amenable to proof, fault tolerant, and support an easy path towards 
efficiency by allowing programmers to optionally and incrementally coordinate the parallel 
execution of their program. 
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2.2  Our Approach with the Meld Language: from Ensembles to Parallel Systems 
Our approach to parallel programming originated with our work on claytronics [26], [27]: a 
form of programmable matter that is an example of a massively distributed cyber-physical 
system. Because a claytronics ensemble might consist of millions of processing nodes which 
are constantly moving around each other and frequently experiencing failures, devising 
successful strategies for programming such an extreme system—where scalability and fault 
tolerance are so important—has given us a very different perspective on the parallel 
programming problem compared with most previous work. We believe that this unique 
perspective is our “secret weapon” in successfully attacking the parallel programming problem 
for a broad range of concurrent systems. 

To understand where we started and how our insights might be more broadly applicable, we 
begin by dividing concurrent systems into two broad categories (each with two 
subcategories): 

1. Ensembles: 
• Embedded-physical distributed systems (e.g., claytronics, sensor networks) 
• Geographically distributed systems (e.g., the power grid, the Internet) 

2. Parallel Systems: 
• Cloud computing systems (e.g., Google-style clusters, etc.) 
• Parallel machines (centralized, synchronized, big-iron and multi-core) 

The apparent differences between these systems have led to significantly different approaches to 
solving the notoriously hard problem of programming them. Traditional proposed solutions 
have focused on specific features of each type of system. Recent advances in the underlying 
hardware, however, have reduced the differences between these systems from the 
programmer’s standpoint, making robustness, fault tolerance, and scalability essential for all 
of these systems. 

To successfully program claytronics ensembles, we developed a new programming 
language that we call Meld [3], [28]. Meld is an extension of Datalog [46], [18] which uses a 
declarative approach to concurrent programming that is based upon logic programming. 
Meld’s conciseness helps to limit the complexity burden on the programmer while writing 
sophisticated applications [28]. In the context of claytronics, we have demonstrated not only 
that Meld programs are scalable, efficient and fault-tolerant, but that they are also amenable 
to formal proof techniques [3], [29], [30]. As we will describe in detail in the remainder of 
this report, our success in programming claytronics ensembles can be transferred both to 
geographically-distributed ensembles (e.g., the power grid) and to large parallel systems 
(including multi-core architectures and large clusters). 

2.3  Goal of Our Research and Expected Impact 
One can think of MPI and MapReduce as being two different extremes along a spectrum of 
languages: MPI offers full expressiveness and control over data partitioning and scheduling, 
but at the expense of significant programming complexity; MapReduce simplifies the 
programming task and implicitly supports scalability and fault tolerance, but with limited 
application scope and no mechanism for programmers to specify data partitioning or 
scheduling strategies beyond the default. 

Our hypothesis is that Meld sits at a sweet spot between these two extremes: Meld offers the 
pro- gramming simplicity of MapReduce (with scalability and fault tolerance baked in), but 
(1) has a broader application scope (e.g., it can efficiently handle highly irregular forms of 
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parallelism), (2) gives program- mers the ability to express clever data partitioning and 
scheduling strategies within the language itself, and (3) supports formal proof techniques. 

We believe that the key to success for Meld is the fact that programmers can choose to 
incrementally specify the coordination of data partitioning and scheduling in the same 
language in which they are implementing the application itself. In the case of claytronics, the 
data partitioning and scheduling issues were naturally dictated by the physical nature and 
functionality of the ensemble: i.e., the data representing each node lived on that node, and 
the associated computation was scheduled on that node as well. For parallel systems, 
however, we need a more flexible approach. Our insight is to use concepts from 
coordination languages [22], [23] to express the partitioning and scheduling separately from 
the main program, thereby allowing programmers to only concern themselves with these 
details if they matter, with the important difference that we will use Meld for both the main 
program and its coordination. By using the same language for both the algorithm and the 
coordination, we believe that this will lead to a more expressive language as well as a more 
complete system which will be amenable to automatic proof. 

To test our above-stated hypothesis we extended Meld to support these partitioning and 
scheduling directives, and evaluated Meld on several kernels—all pairs shortest path, 
pagerank, back-propogation in neural networks, a power distribution algorithm, and loopy 
belief propogation. We have investigated several scheduling methods, explored diffferent 
approaches to programmer controlled coordination, and for the first time effectively 
combined linear and classic logic to allow the programmer a controlled way to optimize their 
usage of memory. Now that the basic implementation has been performed and validated, the 
initial idea that Meld can be an effective tool for parallel programming, the next step in this 
research is to re-implement the coordination primitives that we initially experimented with. 
Combined with other work on proving Meld programs correct we believe that Meld can be an 
effective tool for programming parallel graph-oriented algorithms. 

 

3  METHODS, ASSUMPTIONS , AND PROCEDURES 

3.1  The Meld Language 
Meld is a bottom-up logic programming language based on Datalog. Like Datalog, its 
execution consists of a database of facts plus a set of production rules for generating new 
facts. Each fact is an association between a predicate and a tuple of values. A predicate can 
be seen as a relation or table in which the tuples are its elements. Production rules have the 
form p : −q1, q2, ..., qn. , logically meaning that ”if q1 and q2 and ... and qn are 
true then p is true”. 

3.1.1  Kinds of Facts 
When a Meld program begins execution, the database is populated with axiomatic facts and 
with sensing facts, derived from observations about the world. As a Meld program executes, 
new facts are instantiated and added to the database. These derived facts represent program 
state and are called computation facts. They are used internally by the program to do 
computations and generate results. 
 

Eventually, action facts are also derived. Syntactically, action facts are no different from 



 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
6 

other facts, but semantically they cause some behavior to occur outside of Meld. In the world 
of modular robotics, this behavior is typically the locomotion of a robot from one location to 
another. In distributed and parallel systems action facts can be used to provide an output (to 
files or a terminal), interact with external functions, affect load balancing, etc. Note that 
action facts are not added to the database. 

3.1.2  Rules 
A Meld program contains a set of rules. A rule has two main components: the head, which 
indicates the facts to be generated; and the body, which contains the pre-requisites to generate 
the head facts. The body may contain the following as pre-requisites: subgoals, expression 
constraints or/and variable assignments. The head can only contain subgoals. Variables are 
limited to the scope of the rule and must be defined in the body subgoals or through the 
body variable assignments. Variables that only appear on the head are forbidden, since each 
instantiated fact must be grounded, i.e., its arguments must be instantiated. The abstract syntax 
for the language is presented in Figure 1. 

 

Known Facts 
Accumulated Actions 

Γ ::= 
Ψ ::= 

·kΓ, f (t̂) 
·kΨ, a(t̂) 

Set of Rules 
Actions 

Σ ::= 
A ::= 

·kΣ, R 
a(x̂) 

Facts F ::= f (x̂) 
Constraints C ::= c(x̂) 
Expression 
Rule 

E ::= 
R ::= 

E ∧ EkF k ∀F.EkC 
E ⇒ F kE ⇒ Akagg(F, g, y) ⇒ F 

Figure 1: Abstract syntax for Meld programs 
 
 
Whenever all body pre-requisites are satisfied, the head subgoals are instantiated as facts 

and then they are added to the program database (except when action facts are derived). To 
satisfy all pre-requisites, the body subgoals must be matched against the program database. 
Both constraints and subgoals match successfully when a consistent substitution is found for 
the body’s variables such that one or more facts in the database are matched. Constraint 
expressions are boolean expressions that use variables from subgoals (and thus database facts) 
and from variable assignments. Allowed expressions in constraints include arithmetic, logical 
and set-based operations. 

Each predicate used in the program must be explicitly typed. Each field is either of a basic 
type or a structured type. Basic types include the integer type, floating point numbers and 
the node address (see 3.2.1). A structured type includes lists of basic types. 
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type virtual  neighbor edge(node, node, int). 
type path(node, node, min   int, list node). 
 
path(A, A,   0, [A]). 
 
path(A,  B, D  +  W,  [A  | P]) :- 
edge(A,  C,  W), 
path(C,  B, D,   P). 
 
write(A,  B, D,   P) :- 
terminated(A), 
path(A,  B, D,   P). 

 
Figure 2: All-Pairs Shortest Path algorithm. 

 

3.1.3  Evaluation 
Meld programs are run in a forward-chaining or bottom-up style. This means that we 
consider the set of rules and the current database and look for rules that can be applied to 
generate new facts or actions, updating the database or performing the right actions. We repeat 
this process until we reach quiescence, meaning that no additional facts or actions can be 
derived. 

3.1.4  Aggregates 
In contrast to Datalog, Meld does not have negation, but has set aggregates [47].  The purpose 
of an aggregate is to define a type of predicate that combines the facts of that predicate into 
a single fact. The definition of an aggregate includes the field of the predicate and the type 
of operation to be done on the collection of facts. 

Consider a predicate p(f1, ..., fm−1, agg fm, fm+1, ..., fm+n),  where fm is the aggregate field 
associated with the operation agg. For each combination of values f1, ..., fm−1 there will be a 
set of facts matching the same combination. To calculate the aggregated fact of each 
collection, we take all the fm fields and apply the agg operation. The fields between fm+1 

and fm+n for the aggregated fact are chosen depending on the operation. 
Meld allows several aggregate operations, namely: max, to compute the maximum value; 

min, to compute the minimum value; sum,  to sum all the values of the corresponding 
fields; and first,  to non-deterministically select the first fact. 

Figure 2 presents the All-Pairs Shortest Path algorithm. We use an aggregate to select the 
path with the minimum distance between two pairs of nodes. The minimum path is also 
built as a list. Since the list argument is on the right of the aggregated field, this list is taken 
from the path fact with the minimum distance. 

3.1.5  Deletion 
When facts in the database become stale (are no longer true) they are removed from the 
database. This may happen if some sensing facts about the world are no longer true or if 
the wrong aggregated fact was computed (Section 3.3.1 further explains this). Doing deletion 
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causes all facts derived from them to become stale and also be removed from the database. 
This process continues until all stale facts have been removed and the database consists 
solely of true facts. The mechanisms for doing this are subtle and are explained in detail by 
Ashley-Rollman et al. [3]. 

3.1.6  Linear Logic 
One of the issues in the current Meld design is the problem of state. We have been able to 
solve some of those problems by detecting sets of rules with a state argument, that is, rules 
where the first argument of each predicate corresponds to the current iteration level. For 
example, all the programs in the previous section, except the All-Pairs, perform iterative 
refinements by indexing facts by the iteration number. Inspired by XY-stratification [31], 
we detect XY cliques and then insert delete operations to delete facts in older iterations, thus 
reducing the memory usage of such programs. 

While the previous method solves memory issues, it is still awkward to express stateful 
programs in Meld. We are currently investigating how to model state directly in the language 
by leaving the limitations of classical logic and moving to a more expressive logical 
foundation. Our current direction is to use linear logic [32]. By using the resource 
interpretation of linear logic in a distributed context, we hope to implement new classes of 
algorithms in a declarative high-level manner. A (non-distributed) example of a logic 
programming language with a bottom-up semantics is provided by LolliMon [33]. LolliMon 
also integrates backward chaining for local, deterministic programs which may also make 
sense in our new context. 

3.2  Distribution and Optimization 
In this subsection we describe several code analyses and transformations performed by 
our compiler that turns Meld programs into optimized code able to run in a distributed 
environment. We first describe localization, a technique that allows the local evaluation of rules 
in the same place and automates messaging between workers. We then describe other techniques 
developed in order to reduce the use of deletion during execution, through the use of 
stratification and aggregate annotations. Finally, we explain an analysis technique to deal 
with memory problems in refinement algorithms. 

3.2.1  Localization 
Another difference between Meld and Datalog is that, in the former, the first field of each 
predicate must be typed as a node address. In rules, the first argument of each subgoal is 
called the home variable and refers to a node, the place where facts are stored. This 
convention originated in the context of declarative networking [34], namely, in the P2 
system. For modular robotics, the node is a physical identity, the robot, an independently 
executing processing unit that, together with other nodes, form a graph node. For parallel 
and distributed architectures, each node corresponds to an element of the graph data structure. 

While each fact must be associated with some node or data structure element, a rule may 
contain subgoals that refer to different nodes. In order to simplify the activation of production 
rules, each rule is transformed so that all subgoals refer to the same node. The process of 
localization is fundamental in the distribution of computation. 

 
Before localization, each rule is either a local rule or a link-restricted rule. A local rule 
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does not need to be transformed since only facts from the same node are needed. A link-
restricted rule is a rule where subgoals may refer to different nodes. This type of rule must be 
transformed so that the correct subparts of the rule are matched on the right nodes. This is 
enforced by matching all the subgoals in the node they refer to. To accomplish this, rules 
use structural facts that convey the graph topology of the nodes (i.e. node edges) and 
restrict how facts from different nodes can be used. 

For an example, consider the code in Figure 4, where a rule refers to three different 
nodes, A, B and C. To localize this rule, we first build a tree representing the connection 
paths between nodes by picking an arbitrary root node, in this case, the node A, and then by 
adding edges using structural facts. The resulting tree is represented in Figure 4. Note how 
the constraints were placed in the bottom-most node where all the variables used in the 
constraint were available. This optimization aims to reduce communication by testing 
constraints as soon as possible. 

Once the connection paths are known, localization transforms the original rule in Figure 3 
into the send rules presented in Figure 5, that are characterized by having the same node 
in the body and a different 

 
fact2(A, 2) :- 

fact1(A,  A1), A1  >  B1, 
edge(A, B), fact1(B,  B1), B1  >  C1,  
edge(A, D), fact1(D,  D1), 
edge(B, C), fact1(C,  C1). 

 
Figure 3: Original code. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Localization tree for code in Figure 3. 
 
 
node in the head. Once a send rule body matches, all the subgoals in the head are 
instantiated and then sent to the corresponding node, where the matching of the original rule 
can continue, until the complete rule matches. This is the basis for communication between 
nodes that makes Meld viable for distributed computation. 
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3.2.2  Local Aggregates 
After the program is type-checked and localized, the compiler performs the stratification 
phase. In this phase, we compute the local stratification levels of the program (or local 
stratums), where the predicates that are computed using local rules are ordered. This way, 
structural facts appear on level 0, then the predicates that can be computed using the predicates 
in previous level on level 1, and so on, until all such predicates are stratified. Strata are 
separated by local aggregates, so that if several non-aggregate predicates are only used in local 
rules, they will form a single stratum. For predicates that are also aggregates, they serve as 
separators of strata, so that in stratum i+1, the aggregate is computed using all the facts 
computed in stratum i. 

By using local stratification, we can generate local aggregates - aggregates that only need 
facts from the local node - by keeping track of the current stratification level. Our compiler 
recognizes such situations and is therefore able to pass information to the runtime system so 
that local aggregates can be generated safely once the previous local strata is fully computed. 

Local aggregates are part of a class of aggregates called safe aggregates. For a safe 
aggregate, we know when it should be safely generated, since all the facts needed to 
compute it are available. Therefore, we do not need to employ deletion, because the aggregate 
will always have the correct value. This may not happen in the case of unsafe aggregates. For 
example, in the All-Pairs Shortest Path program in Figure 2, the min  aggregate depends on 
facts coming from remote nodes, so path is not a local aggregate. Moreover, even if, for 
example, we waited for all the minimal paths to reach the target node, this may not work 
because the graph may have cycles which would lead to deadlocks between nodes. 

3.2.3  Neighborhood Aggregates 
In Meld, the graph structure where nodes are part of, is an important abstraction. In our 
experience, most aggregates that depend on remote facts are based around the neighborhood 
abstraction. Therefore, it is very usual to compute the sum or minimum of a set of facts that 
come through the input edges. 

For these aggregates, if we have a fact for each input or output neighbor we can compute 
the aggregate safely. To this end, we augment the aggregate syntax to, optionally, include a 
neighborhood directive. For 

 
   edge(X, Y)  : - edge(Y, X).  
 
fact2(A, 2) : -  

fact1(A,  A1), A1  >  B1,  
   remote1(A, B1),     remote3(A).  

 
   remote1(A, B1)   : - 

   edge(B, A), fact1(B,   B1),  B1  >  C1,  
   remote2(B, C1).  

 
   remote2(B, C1)   : - 

   edge(C, B) , fact1(C,   C1).  
 
   remote3(A) : -  

   edge(D, A), fact1(D,   D1).  
 

Figure 5: Localized rules for code in Figure 3. 
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example, consider the PageRank program in Figure 6, where the calcRank aggregate is 
computed as the sum of a fact from the home node and from all the input neighbors. 

 
type virtual   neighbor edge(node, node).  
type pagerank(node, int, float).  
type calcRank(node, int, sum  float  [<- edge]).  
type  numLinks(node, sum  int).  
 
const  damping =  0.85. 
const iterations  =  35.  
const  pages =  @world.  
 
numLinks(A, 0).  
numLinks(A, 1)  : - edge(A, B).  
 
pagerank(A, 0,  1.0 /  float(pages)).  
pagerank(A, I, V)  :-  

I >  0,  
calcRank(A, I,  T),  
V  =  damping  +  (1.0 - damping) *  T, 
I <=  iterations.  

 
calcRank(A, I +  1, 0.0) :-  

pagerank(A, I, _).  
calcRank(A, I +  1, O  /  float(C)) :-  

edge(B, A),  
pagerank(B, I,  O),  
numLinks(B, C).  

 
Figure 6: PageRank algorithm. 

 
 

This new syntax slightly changes the semantic of the corresponding aggregate. For the case 
of the sum aggregate, it indicates that the calcRank aggregate is to be computed from the 
set of the first facts that generated by each neighbor. Our runtime system therefore discards 
any extra facts that may come from a neighbor. 

Our compiler applies a source transformation to easily tag the source of each neighbor 
fact. First, it reads the direction of the arrow in the aggregate definition and looks up for the 
corresponding structural subgoal in the rule. It then adds an extra argument to the subgoal 
that corresponds to the source of the fact. The compiler also detects local rules and marks the 
source as the home node. For the PageRank program, the affected rules would be transformed 
to the new rules presented in Figure 7. 
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calcRank(A, I +  1, 0.0, A)  :-  

pagerank(A, I, _).  
calcRank(A, I +  1, O  /  float(C),  B)   : -  

edge(B, A),  
pagerank(B, I,  O),  
numLinks(B, C).  

 
Figure 7: Transformed rules using a neighborhood aggregate. 

 
Neighborhood aggregates are also safe aggregates, since we can compute them safely when 

we receive all the needed facts from the neighborhood. Looking back at the shortest path 
program, we may also use neighborhood aggregates if the graph as described by structural 
facts has no cycles, thus effectively making the path aggregate a safe aggregate. 

3.2.4  Detecting Iterative Refinements 
While recursive rules were initially ignored in the field of deductive databases, much 
research has later been the done in the evaluation of such rules. This spawned several 
models such as the perfect model, well-founded semantics, stable model, etc. A particularly 
attractive model, named XY-stratification [31], restricts recursive rules by imposing that the 
first argument of each predicate, called the stage argument, must represent the stratification 
level. This maps naturally to logical algorithms that perform iterative refinement, like the 
PageRank program in Figure 6, where the rank of each page is improved from the 
previous rank. This class of programs is specially amenable to space optimizations. 

Recursive rules form a recursive clique called the XY clique. Our compiler recognizes such 
cliques and ensures that any aggregate inside the XY clique is safe, so that there is no chance 
for deletion to happen. Since the program will always perform forward progress, we eliminate 
all facts from the previous iteration to improve memory usage. 

For the PageRank program presented in Figure 6, the compiler detects a recursive clique 
containing predicates pagerank and calcRank. The predicate calcRank is an aggregate 
that depends on values coming from the neighbor nodes, so it is a safe aggregate. Our 
compiler introduces delete instructions in the body where calcRank and pagerank are 
consumed. Therefore, we are able to keep the memory usage constant, since we only need to 
store the current iteration. 

From the body of all rules that generate calcRank, only one calcRank will come from 
each neighbor for each iteration and another is generated locally, so if we wait from a 
calcRank from each neighbor, the aggregate is generated safely. This kind of reasoning is 
easy to do since both edge, pagerank and numLinks is unique for each node, but for 
more complex problems it is more difficult to deduce this. We can thus easily delete the 
previous iterations as new iterations are computed because no deletion will happen. This 
analysis technique allows us to keep our language within its logic realm, while keeping it 
memory efficient when dealing with state. 

3.2.5  Linear Logic 
While state manipulation using classical logic is possible, it is much more easily 
accomplished using linear logic. In addition, having linear logic available makes 
implementing randomized and approximation algorithms much easier. In approximation 
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algorithms, we want an approximate result that is much faster to compute than the optimal 
result. Examples of such programs are the asynchronous PageRank [35] and certain classes of 
belief propagation algorithms such as SplashBP [36]. 

An example of a randomized algorithm is presented in Appendix A.5. This program solves 
the power grid problem, where we have a set of sinks and a set of sources and we want to 
connect each sink to a source in such a way that no source is overloaded. We first derive a 
linear fact unplugged for each sink and load fact for each source to mark the load as 0. 
Then, the third rule randomly picks a source for each sink, thus consuming the initial 
unplugged fact. The fourth rule selects an overloaded source and switches one of the 
connected sinks to a different source in order to reduce the source’s load. This rule is applied 
several times and the program will converge to a state where the load is equally distributed. 
Finally, we use the proved sensing fact to detect if the pluggedIn fact has been 
derived enough times already (the program could run forever) and a terminate action fact 
may be generated to halt execution. 

3.3  Implementing Meld on Parallel and Distributed Systems 
Meld was originally implemented as an ensemble programming language, targeting modular 
robotic systems such as Claytronics [1]. These systems consist of many autonomous nodes 
passing messages to their physical neighbors. As such, the Meld implementation for 
ensembles described by Ashley-Rollman et al. [3] addresses many of the questions of how to 
implement Meld’s language features on an ensemble. Here we focus on the implementation 
details unique to the parallel and distributed systems world. In addition to having different 
technologies to make use of, such as OpenMPI [5], we also have new challenges to address. In 
particular, a modular robotic system has a natural matching between computation and 
processors. Initial facts are stored upon the robot that sensed them. Similarly, derived facts 
have a natural matching to agents in the system. This distribution of data leaves little choice to 
be made in the division of computation to the various nodes. The parallel and distributed 
systems that we discuss here, have no natural matching of data and computation to processors, 
therefore we must devise new strategies that map nodes to processors. 

Instead of viewing the distributed system as a graph of processing nodes, we view it as a 
graph data structure, where each data structure element (or node) stores computation facts as 
its attributes and uses them for computation. The data structure elements communicate with 
each other using send rules through the use of structural facts. Apart from computation and 
structural facts, we also consider sensing facts and action facts. Action facts are used as a 
means to write output to the terminal or to files. Sensing facts were used in modular robotics to 
make the robots sense the outside world, but here we use them to sense changes in the 
underlining execution model or to coordinate and balance the work load. For instance, we 
have the following sensing facts: terminated,  to sense when the computation has 
finished; colocated, to determine if two nodes are in the same process; and 
select_nodes to distribute the nodes across workers. We are exploring which sensing 
facts may be useful as we apply Meld to new applications. 

The All-Pairs Shortest Path program in Figure 2 is a good example program where all types 
of facts are used: path is a computation fact; edge, a structural fact; terminated, a 
sensing fact; and write, an action fact. The terminated fact allows the program to write 
the shortest paths to the terminal once all paths are known. 
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3.3.1  Execution Model 
In our execution model, we have the graph of nodes as a data structure and a set of workers. A 
worker is a processing unit that is either a thread or a process. A worker is able to process 
facts for any node. The processing of a fact from a given node is thus the basic unit of work in 
our parallel system. We impose two restrictions on work allocation. First, a node may only be 
processed by at most one worker at a given point in time. Second, a worker may only 
process one node at the same time. This disallows the manipulation of a node by multiple 
workers. 

Evaluation of bottom-up logic programs can be done using several techniques, one of the 
most well- known being the semi-naı̈ve fixpoint evaluation [37], [38]. However, these 
techniques are more appropriate for a centralized evaluation and are expensive in a distributed 
environment. To this end, we use the pipelined semi-naı̈ve evaluation from P2 [34], which 
relaxes the semi-naı̈ve fixpoint by processing each new fact separately. When a fact is 
proven to be true, all rules that use the fact in their body are selected as candidate rules. 
For each candidate, the rest of its rule body is matched against the facts in the node, so that 
new facts can be proved. This forces workers to process new facts as soon as they are 
generated. 

Since parallel programs are not as dynamic as ensemble programs, we aim to avoid the 
generation of aggregates from partial information. For programs with only safe aggregates, 
this is not an issue, however, for programs with unsafe aggregates we use deletion if the 
aggregated fact is invalidated later. This, however, may lead to a significant part of the 
computation being invalidated and recomputed. For example, in the All-Pairs Shortest Path 
program in Figure 2, minimal paths may be computed based on partial information and 
must be invalidated. 

Due to the non-deterministic nature of parallel and distributed workers, the amount of 
invalid compu- tation is highly variable, which degrades performance since execution times 
may vary widely between executions. In order to reduce this problem, we introduce the 
notion of a computation round. Each round proceeds as follow: 

•  Workers process all regular facts and safe aggregates; 
•  When a worker has no more work left to do, it enters into the idle state; 
•  Once the graph reaches a quiescent state, that is, when all workers are in the idle 

state, workers synchronize using a termination barrier; 
•  Unsafe aggregates are then generated by all workers; 
•  If some aggregate was generated (or deletion is to be done), it is considered as new 

work and the next computation round will be started; 
•  If no aggregates were generated, the computation is marked as complete and then 
finishes. 
Since a termination barrier, a global operation, is used between computation rounds, 

parallelization is likely improved when the number of rounds is minimized. Making the 
generation of aggregates safe is thus an important endeavor, since it eliminates the need for 
more than one computation round and thus increases asynchronicity between workers and the 
throughput of the whole system. In practice we have not ever had to use an aggregate that 
the compiler could not prove was unsafe and all the programs had no intermediate 
computation rounds. 
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3.3.2  Graph Clustering 
The goal of the runtime system is to balance work between workers. We thus want to maximize 
throughput and parallel efficiency by using a specific strategy that maps workers to new 
facts. Throughput is maximized when workers can process more work without the need to 
communicate with other workers. One way to tackle this is to cluster closer nodes and 
partition the clusters between workers. Since communication between nodes of different 
clusters is reduced, communication between workers is also reduced, which increases 
locality in the computation. 

We introduced the node address constant to make it possible to declare all the graph 
information in the source code. Our compiler is modified to deduce the number of nodes in the 
graph and to build its structure from structural axioms. Each address is prepended by the 
symbol @ (for example, edge(@1,@2)). During compilation, and after the parse and type-
checking phases, the graph clustering phase is called. It builds an internal representation of 
the graph, by mapping each node address a to a normalized node address n. 

Formally, this mapping is represented by the bijective function M (x),  where the domain 
is the set of nodes described in the program’s source code and the codomain is the discrete 
interval [0, N ], where N 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8: Clustering using a breadth-first method. 
 
is the number of nodes in the graph. The byte code of a Meld program includes all the pairs 
(x, M (x)) so that the runtime system can put this information to use. 
 

We have four methods for defining the function M , namely: 
•  Randomized: the mapping is done randomly. 
•  Naive: nodes are ordered as they appear in the source code. 
•  Breadth-First: the mapping is built by picking an arbitrary node, nzero , and by defining M 
(nzero ) = 0. 

Next, we pick all neighbors of nzero  and define their mappings in increasing order. 
Recursively, we pick their neighbors in a breadth-first fashion, until all the nodes have 
been visited. 

•  User Defined: the mapping is done through a worker axiom called select_nodes, that 
accepts as argument the order of the nodes. 
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Using a static approach to work balancing, we can easily slice the codomain of function M 
(x)  to distribute the nodes across T workers. It is also trivial to know the worker of a node n by 
computing the following expression: min(n/(N/T ), N − 1), where N  is the number of nodes. 

The breadth-first method is used with the intent of clustering closer nodes in an ordered 
fashion. While not optimal, this method is simple and very efficient. For example, consider the 
graph in Figure 8. The node addresses represented are the ones included in the source code. 
Using the breadth-first method and starting with node 1, we get the following order: 1, 2, 3, 7, 
5, 6 and 4. If we use a static approach with 2 workers, worker 1 would get nodes 1, 2, 3 and 7 
and worker 2 would get node 5, 6 and 4. With this division only 3 out of 11 paths of 
communication exist between worker 1 and worker 2. 

While for some programs it makes sense to programmatically define a specific node 
ordering, automatic ordering is an important endeavor since it fully automatizes the ordering 
phase. In the future, we intend to explore other techniques such as the METIS partitioning 
method [39]. 

3.3.3  Multithreaded  Execution 
Our Virtual Machine (VM) supports multithreaded execution using Pthreads and has been 
developed to explore different scheduling strategies. Here, we outline the strategies to 
distribute computation between threads. 

•  Static Division (SD) 
In this strategy, the nodes are divided uniformly between threads and each thread has 
a queue of active nodes. The nodes themselves have queues of new facts. An active node 
is a node with some facts to process. 
To obtain work, a thread pops an active node out of its queue and then processes all the 
node facts until the node’s queue is empty. In this case, the node is then marked as 
inactive. When a local or send rule is fired and the corresponding target node N  is owned 
by the executing thread, the new fact is pushed into the node’s queue. If N  is currently 
inactive, it must be set as active and then reinserted into the queue of active nodes of the 
executing thread. If a send rule is fired and N  is located on another thread T , the 
procedure is similar, except we must take extra care when reinserting the node into T ’s 
queue. 
Once a thread has no more active nodes to process, it enters into the idle state. Here, the 
thread tries to synchronize with the other threads in order to terminate the computation 
round. We adapted the termination barrier proposed by Flood et al. [40] to implement 
termination detection. It includes an atomic counter representing the number of active 
threads, a boolean flag for each thread representing the current thread state and a global 
sense flag that is activated when the counter reaches zero. This is used in all the 
multithreaded strategies. 

•  Dynamic Division With Work Stealing (DD) 
In DD each thread starts with a pre-defined set of nodes as in SD. However, the 
division of nodes may not remain static and nodes can move to other threads if threads 
start starving for work. When a thread has no more work, it enters into the idle state, 
whereupon the thread selects a random target thread to steal nodes from its queue. 
Each thread has a set of nodes and each node is augmented with a field called owner 
that points to the owner thread. The set of nodes is also used to generate unsafe 
aggregates during the final phase of each computation round. 
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•  Dynamic Division without Ownership (DDWO) 
DDWO is a dynamic scheduler like DD, except that nodes are not owned. There is only 
one queue of active nodes from where threads can pop nodes. The advantage of this 
method is that there are no costs in stealing nodes. However, there may exist some 
contention when accessing the global queue. Several programs such as Neural Networks, 
where the flow of computation moves from different sets of nodes, can take advantage of 
this scheduling strategy. 

3.3.4  Distributed Computation 
Our VM uses the MPI subsystem to do distributed computation. For each MPI process, we 
may have several threads executing concurrently. There is a leader thread per process that 
works with other leader threads to detect termination of computation rounds. 

The communication between threads now depends on where the other thread is running. If 
it is on the same process, all the rules presented before apply. If, however, they are in different 
processes, we must use message passing. Each thread can independently send messages to 
remote threads. New facts instantiated from send rules that must be sent to remote threads 
are not sent immediately. Instead, each thread has a data structure called the message buffer 
for each remote thread, where new facts are marshaled and buffered to be sent later. When the 
message buffer reaches a certain size (usually, the MPI message limit), all the facts in the 
buffer are sent using a single MPI operation. 

Send operations are done asynchronously, so that threads can put the message on the MPI 
subsystem and then continue working, without waiting for the remote thread to receive the 
message. However, the memory used to marshal facts must be freed later, after the thread 
makes sure the messages were received. For this, each thread maintains several lists of 
request handlers. Each request handler is a pair with a memory pointer to a list of 
serialized facts and a MPI request object. Subsets of request handlers from the request list 
are then checked periodically to test if the send operation has been completed. 

Facts that need to be sent to remote threads are indexed and sent directly to the 
corresponding remote thread. When receiving work, threads ask for their corresponding work 
from the MPI subsystem. When all threads in a process are idle, all threads synchronize and 
the leader thread communicates with other leader threads to detect termination. The detection 
of termination is done using the Dijkstra-Safras token-ring based algorithm [41]. 

While the division of nodes between threads in the same process is done using different 
strategies, the division between processes is done statically. We want to explore in the 
future if a more dynamic approach may be useful, however this may require the movement of 
nodes in the network, which may be too costly. 

3.4  Implementation Details 

3.4.1  Compiler 
The compiler is a 3500 lines program written in Common Lisp. After reading the source 
code file, the compiler builds the Abstract Syntax Tree (AST) and then compiles it into a 
list of instructions, one list for each predicate. These instructions and the ordering of nodes 
are then written into the byte-code file. 

3.4.2  Virtual Machine 
The VM is implemented in C++ and makes use of the Standard Template Library and Boost. 



 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
18 

We use the Boost.Threads package for multithreaded code and Boost.MPI as an abstraction to 
OpenMPI. To start a program, the VM reads the byte-code file passed as an argument and sets 
up the threaded environment, and optionally communicates with other remote processes to 
coordinate distributed execution. The machine architecture was designed with extensibility 
in mind: we have a base class for all schedulers that can be extended to implement new 
scheduling strategies. We next describe some interesting details of our machine. 

•  Lists 
Lists are represented as cons cells. We use reference counting to garbage collect 
unused lists with the use of an atomic integer for each cell. 

•  Queues 
We use lock-free data structures whenever possible. The queues used in SD only have 
one thread popping from the queue while having multiple pushers. These are lock-free 
queues where only the push operation needs to use Compare-And-Set (CAS) operations 
and the pop operation only needs to adjust the sentinel node (there is no race condition 
between the two operations). These queues are adapted from [42]. Since predicates are 
stratified, we use a binary tree bounded priority queue [43] for queues of facts, another 
lock-free data structure, where each level contains a lock-free queue. For  the schedulers 
DD and DDWO, the queue of nodes uses locking since the queue has multiple workers 
pushing or popping nodes. The queue of facts for each node is the same as before, a lock-
free binary tree bounded priority queue. 

•  Tries 
Facts are stored using the trie data structure. Tries are trees where facts are indexed by the 
common prefix. Our trie implementation was inspired by the work done in tabling for 
Prolog [44], where tries were used to store Prolog terms. The original design maintains 
each trie level as a simple linked list, which may be replaced by a hash table if this 
list gets too big in order to make search faster. In our implementation, we may also 
need to delete items from the trie, so we optimized the data structure to make deletion 
an efficient operation. Instead of simple linked lists, we use double linked lists and trie 
nodes may point to their hash table buckets so that we can delete the hash table in 
certain situations. 
Each node uses a trie per predicate to store facts. During evaluation of rule bodies, 
we build a match object, which matches some arguments of the target predicate to 
instantiated values, so that by searching the predicate trie from top to bottom, we can 
easily discard invalid trie branches. For a collection of facts that need to be aggregated, 
we use a separate trie for such facts. When we need to iterate over the collection, we 
use a double linked list of trie leaves (that is maintained by the trie operations) for direct 
access of each stored fact. 

•  Memory 
Memory allocation is done using pools of memory objects local to each thread. This 
reduces con- tention in memory allocation. 

•  Barriers 
During initialization we sometimes need to synchronize the threads. We use a 
Combining Tree Barrier [45] with a global sense flag for these situations. 
During each computation round, we need to assess if we should terminate or continue 
to the next round. We use a special barrier here, formed by a global atomic counter, a 
global triple-state flag and a local triple-state flag, one for each thread. After a thread 
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generates its aggregates, it decrements the global counter. If this is the leader thread, it 
waits for the counter to reach zero. The other threads wait for a change in the global flag 
(by comparing it to their local flag). The state of each flag can be 0, 1 or 2, shifting to 1 
or 2, depending if the current round is even or odd. When the leader thread changes the 
global flag, the other threads read the result and change their flags accordingly. If the 
global state is set to zero, it means that the computation is over. For synchronization 
between processes, we use the MPI_Allreduce operation after all the threads in the 
process have synchronized. 

•  Initialization 
During initialization, each node needs to initialize its edge facts and axioms. To do this 
efficiently, we construct an hash table with N  buckets for the init procedure of the 
byte-code, where N  is the number of nodes. Each node reads its bucket and jumps 
directly to its specific code. 
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4  RESULTS AND DISCUSSION 
We have written several algorithms to experiment with our compiler and runtime system. All 
of them use recursive rules with aggregates and, except for the All-Pairs Shortest Path 
program, they work by iterative refinement. The programs written are the following [48]: 

•  PageRank algorithm; 
•  All-Pairs Shortest Path algorithm; 
•  Neural network training using the back-propagation algorithm; 
•  A naive loopy belief propagation algorithm to de-noise images. 
The All-Pairs Shortest Path algorithm (presented before in Figure 2) is prone to deletion and 

needs several computation rounds to complete because it has one unsafe aggregate. We 
used two different datasets: US  500   Airports,  a graph of the 500 most important US 
airports with the corresponding weighted connections [49]; and grid, a configuration 
where the graph forms a square grid with cycles. 

The Neural Network algorithm uses XY-stratification to order each training pattern and 
to generate improved neural link weights in subsequent iterations during the back-
propagation phase. We used a neural network with 3 layers: input, hidden and output layers. 
We have 32 neurons in the input layer, 16 in the hidden layer and 16 in the output layer. The 
number of training examples is 500. 

In the loopy de-noise algorithm we use a 100 by 100 grid configuration of pixels that 
correspond to the image we want to de-noise. We start with a single belief value for each pixel 
that is updated as iterations advance. Both the belief facts and the messages exchanged 
between the pixels are XY-stratified, so older values are deleted, and only the most recent 
belief and messages values are kept. 

For the PageRank program, we use several graph configurations, namely: grid, where the 
pages form 

a square grid; cycle, where nodes are linked sequentially and the last node links to the first 
one; and a more realistic dataset of web links called search engines [50]. We 
compute the rank values by using 35 iterations. 

4.1  Experimental Results 
In our experimental setup, we used a machine with four AMD Six-Core Opteron TM 8425 HE 
(2100 MHz) chips (24 cores) and 64 GB of DDR-2 667MHz (16x4GB) RAM, running 
GNU/Linux (kernel 2.6.31.5- 127 64 bits). We compiled our virtual machine using GCC 
4.4.5 (g++) with the flags -O0   -std=c+0x -march=x86-64. The libraries used were 
OpenMPI 1.4.3 and Boost 1.41. For MPI we executed all the processes on the same machine, 
so these results will be somewhat advantageous to this scheduler since the costs of network 
communication are nonexistent. 

We developed a simple sequential scheduler that avoids the use of parallel and distributed 
synchro- nization mechanisms and is used as a comparison for all the other strategies. Note 
that for all the Meld programs, the nodes were ordered using the breadth-first approach. 

The results for the PageRank program are presented in Figure 9. Both the grid 150  
and the cycle 50000 datasets are regular datasets, so we should expect similar results 
for all the schedulers, since most nodes have an equal number of connections and thus a 
static division should suffice to balance work. In these benchmarks, DD tends to perform 
slightly better than the other schedulers (except in the last benchmark) and DDWO performs 
worse than most schedulers, even against the static MPI. This is explained by the contention 
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when accessing the queue of active nodes. This rarely happens in DD since the work is well 
distributed initially, so there is little work stealing. 

The search engines benchmark shows us how the PageRank program behaves in a 
more realistic graph. Notably, the dynamic schedulers all perform better than the static 
schedulers. As expected, MPI performs worse than SD, but its behavior is very similar to SD. 
We think this difference results from the extra work performed by MPI in serializing and 
then deserializing new facts. 
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(a) PageRank with dataset grid 150.        

 
 
 
 
 
 
 
 
 
 
 
 
(b) PageRank with dataset cycle 50000. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (c) PageRank with dataset search engines. 
 
 

Figure 9: Performance results for the PageRank datasets. Note that both DD and 
DDWO come up on top and that MPI and DD usually trail each other, since they are 

both static schedulers. 
 
 

In Figure 10 we present the speedups for the Loopy Belief Propagation (BP) and Neural 
Network (NN) program. The BP program is a very regular program: the graph structure 
forms a grid and the nodes simply exchange messages with its neighbors to improve their 
belief value. BP is thus a program where the work is easily balanced by just doing a static 
division. The evidence validates this assumption since all the schedulers perform equally 
well, even the static ones. In the speedup line, DD performs as well as SD for all the 
number of processors. Instrumentation of execution of the virtual machine indicate that little 
work stealing goes in DD, which explains why SD and DD perform identically. 

The NN program is very different than the previous programs. For each training pattern, 
we start by computing the activations of the input, then the hidden and finally the output 
layer. Then, on a second round, we compute the deltas of each node, starting from the output 
layer to the hidden layer, and finally to the input layer. This pattern happens several times, 
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which makes it difficult to balance work across workers. This can easily be seen in the case 
of static schedulers, namely, MPI and SD, where the results are not as good as the other 
schedulers. Another important aspect relates to graph clustering. Notice that when the number 
of workers is 14, the speedup decreases suddenly, but increases a lot when the number of 
workers is 16. This effect is directly related to the graph partitioning used. In the last case, 
the nodes are evenly allocated more horizontally, which makes it more suitable for load 
balancing, since some layer 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (a) Loopy Belief Propagation 
benchmark. 

 (b) Neural Network benchmark. 

 
 
Figure 10: Performance results for the Neural Network (NN) and Belief Propagation (BP) 

programs. While BP is a program with a very regular and clear-cut computational 
pattern, in NN the communication and computation is not as regular, therefore it 

requires dynamic schedulers to perform well. 
 
 
is doing some work at any given time. If a worker only gets nodes from the same layer, 
it will need to sit idle and wait for work if the computation is being performed on other 
layers. In relation to DD and DDWO, we observe that the latter usually beats the former. This 
happens because, as the number of workers increases, randomly selecting a thread to steal 
work from may not be as successful as using a global queue of nodes, since the target 
thread may be out of work. 

In Figure 11 we present the results for the All Pairs Shortest Paths program. We 
experimented with two different versions of this program. In version A, we just compute the 
shortest distance and in the version B,  we compute both the distance and the corresponding 
path as a list of nodes. 

We experimented with the two versions with the grid dataset, Figure 11 (a) and (b), 
respectively. In both A and B  versions, the threaded schedulers perform well, and the same 
scalability pattern can be observed. Moreover, note that in B  the speedups decrease slightly, 
because we need to compute both the minimum distance and the corresponding path. This 
requires the construction of several lists and sublists during runtime that are eventually 
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shared between threads, thus reducing overall performance. Sublists references must also be 
maintained which requires more synchronization costs between threads. For the MPI 
scheduler, the slowdown is more noticeable, but here we need to serialize and deserialize the 
lists, which requires more communication between processes. 

For the US  500   Airports, we observed similar results to the search engines 
PageRank pro- gram. The dynamic schedulers obtain very good speedups while the static ones 
perform badly. As usual, MPI follows the behavior of SD. 

 
 
 
 
 
 
 
 
 
 
 
 

 

 (a) All Pairs  with dataset grid 35. 
 

 (b) All Pairs  with dataset grid 25  (paths 
included). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(c) All Pairs  with dataset US  500   Airports. 
 
 
Figure 11: Performance results for the All Pairs Shortest Paths program. In (a) and (c) 

only the shortest distance is computed, while in (b) both the minimal distance and the 
corresponding path are computed. 
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5  CONCLUSION 
Over the course of this project we have sucessfully ported Meld from its original use as a 
programming language for Claytronics and other physically embedded massively distributed 
systems to more traditional parallel machines including multi-core machines and those that 
support MPI. The exploration of Meld as a parallel programming language is still ongoing. 
However, it already shows promise for creating concise and understandable programs which 
run efficiently. 

In addition to the porting of Meld to more traditional parallel machines we have 
incorportated linear logic into the language supporting a way to manage state change in a way 
that will lend itself to proving programs correct. In work related to this grant we have shown 
that the semantics of this approach is sound and complete. 

We are still experimenting with various coordination primitives and will continue to push 
on algorithm development particularly for graph-based aglorithms which exhibit irregular 
parallelism. 
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APPENDIX 
Here we list the source code for the Meld programs we evaluated. 

 
 
A.1  All Pairs 
This program computes the shortest distance and the corresponding path between all pairs of 
nodes in a graph. 

 

type path(node, node, min   int, list node). 

path(A, A,   0, [A]). 

path(A,  B, D  +  W,  [A  | P]) :- 
edge(A,  C,  W), 
path(C,  B, D,   P). 

 
 
A.2  Pagerank 
Pagerank computes the rank of a node. 

 

type pagerank(node, int, float). 
type calcRank(node, int, sum  float  [<- edge]). 
type  numLinks(node, sum  int). 
 
const  damping =  0.85. 
const iterations  =  35. 
const  pages =  @world. 
 
numLinks(A, 0). 
numLinks(A, 1)  :- edge(A, B). 
 
pagerank(A, 0,  1.0 / float(pages)). 
pagerank(A, I, V)  :- 

I >  0, 
calcRank(A, I, T), 
V  =  damping  +  (1.0 - 
damping) *  T, I <=  
iterations. 

 
calcRank(A, I +  1, 0.0) :-  

pagerank(A, I, _). 
calcRank(A, I +  1, O  / float(C)) :- 

edge(B, A), 
pagerank(B, I, O), 
numLinks(B, C). 
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A.3  Neural Network 
The Neural Network program implements the training phase of the back-propagation 
algorithm for neural networks. 

 

type activated(node,  int, float). 
type expected(node, int, float). 
type receive(node, int, sum  float [<- link]). 
type hiddengrad(node, int, float). 
type allhiddengrad(node, int, sum  float [-> link]). 
type outgrad(node, int, float). 
type delta(node,  int, node, float). 

extern float  sigmoid(float). 

const lrate  =  0.01. 
 
receive(A, I, W   *  V)  :- 

link(B,  A), 
weight(B, I, A,   W), 
activated(B, I, V). 

 
activated(A, I, sigmoid(V)) :- 

receive(A, I,  V). 
 
delta(A, I, B, lrate  *  V  *  G)  :- 

hidden(A), 
activated(A, I, V), 
link(A, B), 
outgrad(B, I,  G). 

 
outgrad(A, I, G  *  (1.0 - G)  *  (E - G)) :- 

expected(A, I, E), 
activated(A, I,  G). 

 
allhiddengrad(A, I, V  *  W)  :- 

hidden(A), 
link(A, B), 
weight(A, I, B,  W), 
outgrad(B, I,  V). 

 
hiddengrad(A, I, V  *  (1.0 - V)  *  T) :- 

activated(A, I,  V), 
allhiddengrad(A, I, T). 

 
delta(A, I, B, lrate  *  V  *  G)  :- 

input(A), 
activated(A, I,  V), 
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link(A, B), 
hiddengrad(B, I, G). 

 
weight(A, I +  1, B, O  +  D)  :- 
weight(A, I, B, O), 
delta(A, I, B, D). 
 

 
A.4  Belief Propagation 
This programs implements the naive loopy belief propagation algorithm. 
 

type route edge(node, node). 
type coord(node, int). 
type potential(node,  list float). 
type belief(node,  int, list float). 
type globalpotential(node,  list float). 
type message(node, int, node, list float). 

type beliefmul(node, int, sum  list float  [-> edge]). 

extern list float normalize(list float). 
extern list float  damp(list float, list float, float). 
extern list float divide(list float, list float). 
extern list float convolve(list float, list float). 
extern list  float addfloatlists(list float, list float). 
 
const iterations  =  35. 
const  damping =  0.1. 

beliefmul(A, I +  1,  L) :- edge(A, B),  message(B, I, A,   L). 

belief(A, I, normalize(addfloatlists(L, P))) :- 
beliefmul(A, I, L), potential(A, P), I <=  iterations. 

 
message(A, I +  1,  B, damp(Convolved, OldOut, damping)) :- 

I <=  iterations, 
belief(A, NI, Belief), 
globalpotential(A, GP), 
NI  =  I +  1, 
edge(A, B), 
message(B, I, A,   OldIn), 
message(A, I, B, OldOut), 
Cavity =  normalize(divide(Belief, OldIn)), 
Convolved =  normalize(convolve(GP, Cavity)). 
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A.5  Power Grid 
type route edge(node, node). 
type source(node). 
type sink(node, int). 
type linear  pluggedIn(node, node). 
type linear  unplugged(node). 
type linear  load(node, float). 
 
unplugged(Sink) :-  sink(Sink, _). 
load(Source, 0) :- source(Source). 
 
pluggedIn(Sink, Source), 
load(Source, OldAmt   +  Amt)   :- 

unplugged(Sink), 
!sink(Sink,  Amt), 
!edge(Sink, Source), 
!source(Source), load(Source, OldAmt). 

 
pluggedIn(Sink,  NewSource), 
load(OldSource, OldSourceAmt  - Amt), 
load(NewSource, NewSourceAmt  +  Amt)   :- 
pluggedIn(Sink,  OldSource), 
!edge(Sink,  NewSource), 
load(OldSource, OldSourceAmt), 
OldSourceAmt  >  1, 
load(NewSource, NewSourceAmt), 
!sink(Sink,  Amt), 
NewSourceAmt  +  Amt  <  OldSourceAmt  || rand(). 

terminate() :-  proved(pluggedIn) >  MAX_ITERATIONS. 
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